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Updated hazard rate equation for single safeguards
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Abstract

Commonly used equations have been developed which allow application of failure rate data for safeguards. While these equations often
give reasonable results, they can significantly over predict the risk for some conditions. This can lead the analyst to believe that a given
operation presents an unacceptable risk, requiring additional safety measures when, in fact, the operation may actually meet the risk criteria.
This paper shows the limitations of the commonly used equations by comparing those equations with hazard rates generated from Monte
Carlo simulations. A little-known equation is then presented, which is shown to precisely match the Monte Carlo simulations. It is suggested
that this equation be used when accuracy is required.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Hazards can occur when a demand is placed on a system
hat can lead to an adverse consequence and the safeguards
hat prevent or mitigate the consequence fail. The hazard rate
s simply the frequency of the initiating event (the system
emand) multiplied by the likelihood that the safeguards fail
pon demand:

hazard rate (HR)

= demand rate (D) × safeguard failure upon demand (Q)

(1)

This equation forms the basis of the Layer of Protection
nalysis (LOPA). The analysis is trivial if the demand rate
nd the conditional probability of failure of the safeguards
re known. However, while the demand rate is usually known
r can be reasonably estimated, the safeguard failure data is
ften given in the literature as a failure rate instead of as
conditional failure probability. In those cases, in order to

This paper presents two commonly used equation
evaluating the hazard rate given the safeguard failure
These equations are compared against hazard rate data
that were generated from Monte Carlo simulation, show
their respective limitations. Another equation is then
sented that is shown to accurately match the Monte C
simulations, and is thus presented as the most accurate h
rate equation. The basis for all of the approaches pres
in this paper are as follows:1

• the systems under consideration are protected by a s
safeguard;2

• the safeguard is tested at regular defined intervals;
• failures and demands are random;
• failures go undetected (“hidden” failures) until there

either a demand or a test;
• upon detection (either by a demand or a test), the

guard is immediately repaired to perfect working or
and returned to service (i.e., mean time to repair is t
as insignificant).
pply Eq.(1), the given safeguard failure rate must first be
onverted to a failure-upon-demand basis.

∗ Tel.: +1 215 785 7327; fax: +1 215 785 7077.
E-mail address: mrothschild@rohmhaas.com.

1 While the basis for this analysis applies to many situations, it is not
universal. None of the given equations in this paper apply unless all of these
conditions are met.

2 Additional complications are sometimes introduced when more than one
safeguard is applied, invalidating these formulas.
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2. Safeguard failure analysis

2.1. Simplified straight-line equation

As stated above, hazards can occur when a demand is
placed on a system that can lead to an adverse consequence
and the safeguard to prevent the consequence is in a failed
state. The probability of system failure prior to time (t) is
given by the cumulative distribution functionQ(t). This func-
tion is derived by applying the Poisson distribution to the
component failure rate (λ):

Q(t) = 1 − e−λt (2)

The cumulative likelihood of a safeguard being in a failed
state increases with time until the safeguard is tested, and sub-
sequently repaired, if needed. Therefore, the likelihood of a
safeguard being in a failed state at any given time (also known
as the safeguard unavailability) ranges from zero (right after
testing) to 1− eλT (right before the next test at time “T”).
Since demands are random, if there is only the potential
for a single demand in a test interval, this demand could
occur at any time in the test interval. The hazard rate can
be determined by integrating the demand rate multiplied by
the conditional probability of safeguard failure over the test
interval:
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Fig. 1. Straight-line simplification.

the safeguard would either be found to be working or it would
be subsequently repaired. In this regard, demands are in some
respects the same as tests, as they both evaluate the condi-
tion of the safeguard, with the obvious difference that, given
a failed safeguard, a demand results in a hazard, whereas
detecting a failed safeguard during a test is benign. The time
period between demands decreases with increasing number
of demands, resulting in decreased safeguard unavailability
at each demand. In contrast, Eq.(6) treats the conditional
probability of safeguard failure (λT/2) as independent of the
demand rate. Therefore, the equation over predicts the hazard
rate for high demand situations, as shown inFig. 1. It should
be intuitive that the hazard rate cannot exceed the safeguard
failure rate and that this equation cannot apply above the
dashed line inFig. 1.

2.2. High/low demand equation

To prevent the hazard rate from exceeding the safeguard
failure rate, Eq.(6) has been modified into two straight-
lines, as given by Eq.(7) and as shown inFig. 2. This
modification to the straight-line equation is referred to as
the high/low demand equation[1–4]. This equation prevents
the hazard rate from exceeding the safeguard failure rate. At
very high demand rates, it is apparent that the true hazard rate
approaches the safeguard failure rate as given in this approach
( inter-
v inly
w his
a oder-
a ailure
r ver,
R = 1

T

∫ T

0
D(1 − e−λt)dt (3)

henλt � 1, then the term (1− e−λt) in Eq. (2) simplifies
o

(t) = λt (whenλt � 1) (4)

The hazard rate in Eq.(3) then simplifies to:

R = D

T

T∫
0

λt dt (5)

Solving Eq.(5) gives:

R = Dλt

2
(6)

Eq.(6) is a commonly used, straight-line equation for e
ating the hazard rate when the safeguard failure data is
s a failure rate. This equation has enjoyed widespread
s it is simple to use and is sufficiently accurate in most a
ations. However, as discussed below, it is not valid for l
ailure rates and large demand rates.

As derived above, the simplified straight-line equatio
ased on a highly reliable safeguard (λT � 1). When this
asis is not valid, then the actual hazard rate, as determ

rom Eq.(3) is less than the straight-line approximation gi
n Eq. (6). Furthermore, this equation only applies to
otential for a single demand in a test interval. If there w
ultiple demands in a test interval, then the likelihood of
re immediately following each demand would be zero
that is, if there are a large number of demands in a test
al, then if the safeguard were to fail, there almost certa
ould be a demand following the safeguard failure). T
pproach provides a conservative upper estimate for m
te demand rates and for moderate to high safeguard f
ates, which may be suitable for many applications. Howe

Fig. 2. High/low demand straight-line modification.
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Fig. 3. Approximate analytical solution.

sometimes a more accurate analysis is needed.

HR = MAX

(
DλT

2
, λ

)
(7)

2.3. “More accurate” equation

Dr. Trevor Kletz introduced the following equation as a
“more accurate” equation[5] and draft ISA-TR.84.00.04[4]
refers to it as “rigorous”:

HR = λ · (1 − e−DT/2) (8)

This equation, shown inFig. 3, matches up with the
straight-line equation for low demand rates, approaches the
safeguard failure rate for high demand rates, and does not
have any unexpected discontinuity, as shown in the high/low
demand equation. Visually, this relationship appears to be
accurate; however, dissection of this equation reveals its lim-
itations.

As stated in the basis, a failure can occur randomly across
a test interval with uniform probability. The tacit assumption
is made in Eq.(8) that the failure occurs at the midpoint
of the test interval. It follows then that given an average of
DT demands in a given test interval, the expected number of
demandsafter the failure isDT/2. Based on Poisson’s law,
the likelihood of a demand occurring after the midpoint is:
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Solving this equation shows that the average hazard rate
is less than the value taken at the midpoint, so that selecting
the midpoint value is overly conservative. As a special appli-
cation, whenDt � 1, Eq.(11) simplifies to the straight-line
equation as given in Eq.(6):

HR = λ

[∫ T

0 Dt dt

T

]
= λDT

2

Another simplification is that Eq.(8) is based on the
assumption that the safeguard failure rate is an independent
parameter (i.e., hazard rate is directly proportional to the fail-
ure rate). This is true for an initial failure, which is taken as a
random event. However, a second failure within a test interval
cannot occur until there is first a system demandfollowing
the initial failure. Likewise, a third failure cannot occur until
there is a second demand, and so on. For multiple failures
within a test interval, the failure rateis dependent on the
occurrence and timing of demands. Thus, for high failure
rate safeguards, Eq.(8) will overestimate the actual hazard
rate.

2.4. Comparing high/low demand and “more accurate”
equations with actual hazard rate

Solving for the hazard rate, given demand and failure fre-
q onal
p
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in a
= 1 − e−DT/2 (9)

he derivation of Eq.(8) is completed by multiplying th
ailure rate (λ) with the conditional probability of a dema
ollowing the safeguard failure (Ω = 1− e−DT/2).

There are two simplifications made in Eq.(8), both result
ng in over prediction of the hazard rate. The first simplifi
ion is in tacitly locating the failure at the midpoint of the t
nterval range. The actual distribution of the failure of
afeguard is random, and is therefore linear across th
nterval. Based on Poisson’s law, the likelihood of a dem
ccurring after any point in time is:

= 1 − e−DT (10)

hus, the actual expected hazard rate is determined by
ration to be:

R = λ

∫ T

0 (1 − e−Dt)dt

T
(11)
uencies, involves converting the failure rate to a conditi
robability of failure as a function of time as given in Eq.(2):

(t) = 1 − e−λt

The likelihood of the safeguard being in a failed state a
ext demand is solved by applying the time (t) between th
urrent demand, and the previous demand or test to the
quation. This likelihood is then multiplied by the freque
f the demand to give the hazard rate. The hazard ra
olved using a Monte Carlo simulation, where the placem
f the demands are randomly made and repeated mu

imes to give a representative sampling. The approach t
epicted inFig. 4, is as follows:

1) From the average demand-rate-per-test interval, d
mine the distribution and frequency of the discrete p
sible number of demands in a given test interval, b
on a Poisson distribution.

2) For each select number of demands-per-test inte
randomly distribute the demands in the test interva
applying the Poisson distribution.

3) Evaluate the conditional probability of failure at ea
demand (Q = 1− e−λ�t).

4) Sum the conditional probability of failures for
demands in the test interval for a given numbe
demands to give the “expected” number of failures,N.

5) Repeat Steps 2–4 thousands of times to get a repr
tative sample and take the average value for the nu
of failures per demand-per-test interval.

6) For each number of demands in a test interval, mul
the value from Step 5 by the frequency of a demand
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Fig. 4. Flow chart for evaluating hazard rate.

test interval (determined from Step 1), giving the hazard
rate per number of demands per test interval.

(7) Sum together the values in Step 6 for all the discrete
number of demands, giving the hazard rate per test
interval.

(8) Multiply the value in Step 7 with the testing frequency,
1/T (tests per time period), giving the hazard rate.

Fig. 5gives a comparison of the hazard rate as evaluated
by this rigorous approach with that given by the high/low
demand Eq.(7) and the “more accurate” Eq.(8). These fig-
ures show that both of these equations are valid for small
values ofλT and DT.3 However, both Eqs.(7) and(8) over

3 From a practical perspective, these equations are valid whenλT andDT
are less than 0.1.

predict the hazard rate for all larger values ofλT andDT.
This over prediction can range from approximately 15%
for small failure rates to several 100% for larger failure
rates.

2.5. “Most accurate” equation

A confidential source provided the following hazard rate
equation, given as Eq.(12). As shown inFig. 5, this equation
perfectly matches the Monte Carlo simulation for all tested
ranges of failure and demand rates, and is therefore presented
as the “most accurate” hazard rate equation.

(12)
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Fig. 5. Hazard rate comparison. (a) Safeguard failure rate = 0.01 per test interval. (b) Safeguard failure rate = 0.1 per test interval. (c) Safeguard failure rate = 1
per test interval. (d) Safeguard failure rate = 10 per test interval.

Table 1
Comparison of failure rate equations

Failure rate per
test period

Demand rate per
test period

Straight-line
(Eq.(6))

High/low demand
(Eq.(7))

“More accurate”
(Eq.(8))

“Most accurate”
(Eq.(12))

Low (<0.1) Low (<0.1) Excellent Excellent Excellent Excellent
Moderate (1) Fair Fair Good Excellent
High (10) Poor Good Good Excellent

Moderate (1) Low (<0.1) Good Good Good Excellent
Moderate (1) Fair Fair Good Excellent
High (10) Poor Good Good Excellent

High (10) All Poor Poor Fair Excellent

3. Conclusion

Table 1presents a comparison of these failure rate equa-
tions. This table shows that the simplified straight-line Eq.
(6) is suitable when the safeguard failure rate and the system
demand rate are low, which is commonly the case. How-
ever, this equation overestimates the failure rate for moderate
demand rates and is unsuitable for use for high demand
rates. The high/low demand Eq.(7) likewise overestimates
the risk at moderate demand rates, but may be reasonable
for high demand rates. The “more accurate” Eq.(8) presents
an improvement over the straight-line approach for moderate
demand rates, but still overestimates the actual failure rate.
None of these equations are suitable given a high safeguard
failure rate. Only Eq.(12) accurately gives the hazard rate
for the wide range of evaluated failure and demand rates. The

“most accurate” Eq.(12)should be used when either the fail-
ure rate or the demand rate is not low and accuracy is required.

Appendix A

Definitions4

Demand following failure (Ω) The conditional likelihood
that a demand occurs following a failure of a safe-
guard. A hazard only occurs if a demand follows a
safeguard failure

4 It is recognized that there is considerable variation in terminology and
definitions in the field of risk analysis. This table is intended to help readers
understand how the terms are used in this paper.
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Demand rate (D) The frequency (occasions per time period),
on average, at which an initiating cause occurs. The
rate can be measured, if frequent, or estimated if not

Expected number of hazards (N) The expected number of
hazards in a test interval

Hazard An undesired event that can result in undesired
safety, environmental or financial consequences.
Hazards are deviations from normal operations and
require the occurrence of an initiating cause with
the failure of the safeguard

Hazard rate (HR) The frequency (occasions per time period)
at which a hazard is expected to occur. For exam-
ple, the frequency at which the pressure in a vessel
exceeds the design pressure or the frequency at
which a vessel is overfilled. The hazard rate can
range from a rare calculated event to a frequent event
where the rate can be measured

Initiating cause An undesired cause of deviation from nor-
mal operation parameters that can lead to a hazard.
Examples of initiating causes include a stuck con-
trol valve, a pump failure, and failure to follow
procedures

Safeguard One or more components installed as a unit to pre-
vent the hazard from occurring, either by reducing
the likelihood of the initiating cause or by mit-
igating the consequences of the hazard. For this

ture

disk, level gauge, etc.) or administrative (proce-
dures, PPE, etc.)

Safeguard failure rate (λ) The average frequency that a safe-
guard is estimated to fail

Safeguard failure-upon-demand (Q) The conditional likeli-
hood that a safeguard would fail, upon demand

Testing interval (T) Time period between independent tests
of the safeguards. A year is a typical test interval, but
test intervals can range from essentially continuous
to no tests at all
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