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Abstract

Commonly used equations have been developed which allow application of failure rate data for safeguards. While these equations often
give reasonable results, they can significantly over predict the risk for some conditions. This can lead the analyst to believe that a given
operation presents an unacceptable risk, requiring additional safety measures when, in fact, the operation may actually meet the risk criteria.
This paper shows the limitations of the commonly used equations by comparing those equations with hazard rates generated from Monte
Carlo simulations. A little-known equation is then presented, which is shown to precisely match the Monte Carlo simulations. It is suggested
that this equation be used when accuracy is required.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Failure rate data; Hazard rate; Demand rate; Safeguard failure rate; Monte Carlo simulation

1. Introduction This paper presents two commonly used equations for
evaluating the hazard rate given the safeguard failure rate.
Hazards can occur when a demand is placed on a systenThese equations are compared against hazard rate data curves
that can lead to an adverse consequence and the safeguardkat were generated from Monte Carlo simulation, showing
that prevent or mitigate the consequence fail. The hazard ratetheir respective limitations. Another equation is then pre-
is simply the frequency of the initiating event (the system sented that is shown to accurately match the Monte Carlo
demand) multiplied by the likelihood that the safeguards fail simulations, and is thus presented as the most accurate hazard
upon demand: rate equation. The basis for all of the approaches presented
in this paper are as follows:

hazard rate (HR)
— demand ratel) x safeguard failure upon demang) e the systems under consideration are protected by a single
safeguard;
(1) o the safeguard is tested at regular defined intervals;

o failures and demands are random;

o failures go undetected (“hidden” failures) until there is
either a demand or a test;

e upon detection (either by a demand or a test), the safe-

guard is immediately repaired to perfect working order

and returned to service (i.e., mean time to repair is taken

as insignificant).

This equation forms the basis of the Layer of Protection
Analysis (LOPA). The analysis is trivial if the demand rate
and the conditional probability of failure of the safeguards
are known. However, while the demand rate is usually known
or can be reasonably estimated, the safeguard failure data is
often given in the literature as a failure rate instead of as
a conditional failure probability. In those cases, in order to
apply Eq.(2), the given safeguard failure rate must first be

. . 1 While the basis for this analysis applies to many situations, it is not
converted to a failure-upon-demand basis. ySIS app y

universal. None of the given equations in this paper apply unless all of these
[ conditions are met.
* Tel.: +1 215 785 7327; fax: +1 215 785 7077. 2 Additional complications are sometimes introduced when more than one
E-mail address: mrothschild@rohmhaas.com. safeguard is applied, invalidating these formulas.
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2. Safeguard failure analysis
HR = DAT/2
2.1. Simplified straight-line equation

As stated above, hazards can occur when a demand is
placed on a system that can lead to an adverse consequence '
and the safeguard to prevent the consequence is in a failed ~ HR)
state. The probability of system failure prior to time i6 Demand Rate (D)
given by the cumulative distribution functig¥(z). This func-
tion is derived by applying the Poisson distribution to the Fig. 1. Straight-line simplification.

component failure rate.j:

o =1-e™ (2) the safeguard would either be found to be working or it would
The cumulative likelihood of a safeguard being in a failed P& Subsequently repaired. In this regard, demands are in some
state increases with time until the safeguard is tested, and sub/€SPECtS the same as tests, as they both evaluate the condi-
sequently repaired, if needed. Therefore, the likelihood of a tion of the safeguard, with the obvious difference that, given
safeguard being in a failed state at any given time (also known @ failed safeguard, a demand results in a hazard, whereas

as the safeguard unavailability) ranges from zero (right after détecting a failed safeguard during a test is benign. The time
testing) to 1- €7 (right before the next test at timer™). period between demands decreases with increasing number

Since demands are random, if there is only the potential of demands, resulting in decreased safeguard unavailability
for a single demand in a test interval, this demand could & €ach demand. In contrast, H§) treats the conditional
occur at any time in the test interval. The hazard rate can Probability of safeguard failure.(7/2) as independent of the

be determined by integrating the demand rate multiplied by demand rate. Thereforg, thc_e equation over_pred|cts the hazard
the conditional probability of safeguard failure over the test ate for high demand situations, as showrig. 1 It should

interval: be intuitive that the hazard rate cannot exceed the safeguard
. failure rate and that this equation cannot apply above the
HR = %/ D(1— e *)dr 3) dashed line irFig. 1
0
Whenit < 1, then the term (- =) in Eq. (2) simplifies 22 High/low demand equation
o To prevent the hazard rate from exceeding the safeguard
0() =it (whenir < 1) 4) failure rate, Eq.(6) has been modified into two straight-
) o lines, as given by Eq(7) and as shown irFig. 2 This
The hazard rate in E¢3) then simplifies to: modification to the straight-line equation is referred to as
T the high/low demand equati¢b—4]. This equation prevents
HR — B/M dr ) the hazard rate from exceeding the safeguard failure rate. At
very high demand rates, itis apparent that the true hazard rate
0 approaches the safeguard failure rate as given in this approach
Solving Eq.(5) gives: (thatis, if there are a large number of demands in a test inter-
Dit val, then if the safeguard were to fail, there almost certainly
HR = — (6) would be a demand following the safeguard failure). This

approach provides a conservative upper estimate for moder-
Eq.(6)is acommonly used, straight-line equation for eval- ate demand rates and for moderate to high safeguard failure

uating the hazard rate when the safeguard failure data is giverrates, which may be suitable for many applications. However,

as a failure rate. This equation has enjoyed widespread use,

asitis simple to use and is sufficiently accurate in most appli-

cations. However, as discussed below, it is not valid for large

failure rates and large demand rates. /,/'HR =DaTi2
As derived above, the simplified straight-line equation is

based on a highly reliable safeguavdr' 1). When this L R —- = high demand -

basis is not valid, then the actual hazard rate, as determined Hazard Tow demand

from Eq.(3) is less than the straight-line approximation given (HR)

in Eq. (6). Furthermore, this equation only applies to the

potential for a single demand in a test interval. If there were Demand Rate (D)

multiple demands in a test interval, then the likelihood of fail-

ure immediately following each demand would be zero, as Fig. 2. High/low demand straight-line modification.
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Solving this equation shows that the average hazard rate
is less than the value taken at the midpoint, so that selecting
the midpoint value is overly conservative. As a special appli-
cation, whenDr <« 1, Eq.(11) simplifies to the straight-line
equation as given in Eg6):

HR = DAT/2

HR = A(1 - ")

Hazard
Rate T
Jo Dtdt| ADT
HR =1 |22 =
Demand Rate T 2
Fig. 3. Approximate analytical solution. Another simplification is that Eq(8) is based on the

assumption that the safeguard failure rate is an independent
parameter (i.e., hazard rate is directly proportional to the fail-
ure rate). This is true for an initial failure, which is taken as a
HR = MAX < DAT A) @) random event. However, a second failure within a test interval
2’ cannot occur until there is first a system demafadiowing
the initial failure. Likewise, a third failure cannot occur until
2.3. “More accurate” equation there is a second demand, and so on. For multiple failures
within a test interval, the failure rat® dependent on the
Dr. Trevor Kletz introduced the following equation as a occurrence and timing of demands. Thus, for high failure

sometimes a more accurate analysis is needed.

“more accurate” equatiofp] and draft ISA-TR.84.00.0¢4] rate safeguards, E¢8) will overestimate the actual hazard
refers to it as “rigorous”: rate.
HR=x-(1—eP7/? (8)

2.4. Comparing high/low demand and “more accurate”

This equation, shown ifFig. 3, matches up with the  ¢quations with actual hazard rate
straight-line equation for low demand rates, approaches the . . .
safeguard failure rate for high demand rates, and does not Sol\_/lng_for the hazard rz_ate, given demand and fa"“f‘? fre-
have any unexpected discontinuity, as shown in the high/low quencies, mvolyes convertlng.the fa|!ure ratetoa f:ondltlonal
demand equation. Visually, this relationship appears to be probability of failure as a function of time as given in K2):
accurate; however, dissection of this equation reveals its lim- o) =1—e ™
itations. o o _

As stated in the basis, a failure can occur randomly across ~ The likelihood of the safeguard being in a failed state at the
atest interval with uniform probability. The tacit assumption next demand is solved by applying the timgketween the
is made in Eq(8) that the failure occurs at the midpoint currentdemand, and the previous demand or test to the above
of the test interval. It follows then that given an average of equation. This likelihood is then multiplied by the frequency
DT demands in a given test interval, the expected number of of the demand to give the hazard rate. The hazard rate is
demandszfter the failure isDT/2. Based on Poisson’s law, ~solved using a Monte Carlo simulation, where the placement
the likelihood of a demand occurring after the midpointis:  of the demands are randomly made and repeated multiple

times to give a representative sampling. The approach taken,

Q=1-e""? 9) depicted inFig. 4, is as follows:

The derivation of Eq(8) is completed by multiplying the (1) From the average demand-rate-per-test interval, deter-

failure rate {) with the conditional probability of a demand mine the distribution and frequency of the discrete pos-

following the safeguard failure = 1— e~P72), sible number of demands in a given test interval, based
There are two simplifications made in £§), both result- on a Poisson distribution.

ing in over prediction of the hazard rate. The first simplifica- (2) For each select number of demands-per-test interval,

tion is in tacitly locating the failure at the midpoint of the test randomly distribute the demands in the test interval by

interval range. The actual distribution of the failure of the applying the Poisson distribution.

safeguard is random, and is therefore linear across the tes{3) Evaluate the conditional probability of failure at each
interval. Based on Poisson’s law, the likelihood of a demand demand Q=1— e *27),

occurring after any point in time is: (4) Sum the conditional probability of failures for all
O—1_eDT (10) demands in the test interval for a given number of
demands to give the “expected” number of failur€s,
Thus, the actual expected hazard rate is determined by inte{5) Repeat Steps 2—4 thousands of times to get a represen-
gration to be: tative sample and take the average value for the number
- b of failures per demand-per-test interval.
HR — )Lfo (1—e™)dr (11) (6) For each number of demands in a test interval, multiply

T the value from Step 5 by the frequency of a demand in a
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Average No. of
Demands per
Test Interval

Step 1:
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demand Frequency of 1 Frequency of 2 Frequency of 3 Frequency of n
distribution and Demand per T Demands per T Demands per T oo e Demands per T

frequenc
quency Dl D3 Dn

D,
Steps 2, 3: .
Distribute demands

randomly over test
interval. Evaluate

failure rate.
—p | D:Q | D;:Q, D.Q,
Step 4: Sum LA— —

up expected Repeat Test Interval Test Interval
number of P

failures per 1'1_'1u1tiple

demand. times

Step 5: Repeat ——————— ,
numerous times: N, =0 N, = 2 Q

evaluate average 1

number of failures
per demand.
N
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Test Interval

v
m=$Q

!
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Step 6: Multiply
failures per demand DN, D

by demands per test a
interval, giving
hazard rate per
number of demands
per test interval.
H

Step 7: Sum over Z DN

all demands, giving
hazard rate per test
interval. ¢

test interval, giving
hazard rate per unit
time.

Step 8: Divide by HR =1 /T)i DN
1

Fig. 4. Flow chart for evaluating hazard rate.

test interval (determined from Step 1), giving the hazard predict the hazard rate for all larger valuesidf and DT.
rate per number of demands per test interval. This over prediction can range from approximately 15%
(7) Sum together the values in Step 6 for all the discrete for small failure rates to several 100% for larger failure
number of demands, giving the hazard rate per testrates.
interval.
(8) Multiply the value in Step 7 with the testing frequency, 2.5. “Most accurate” equation

1/T (tests per time period), giving the hazard rate.
A confidential source provided the following hazard rate

equation, given as E¢12). As shown inFig. 5, this equation
perfectly matches the Monte Carlo simulation for all tested
ranges of failure and demand rates, and is therefore presented
as the “most accurate” hazard rate equation.

Fig. 5gives a comparison of the hazard rate as evaluated
by this rigorous approach with that given by the high/low
demand Eq(7) and the “more accurate” E¢). These fig-
ures show that both of these equations are valid for small
values ofAT and DT® However, both Eq(7) and(8) over

- ?\’ (1 _e—(DJrk)T)
3 From a practical perspective, these equations are valid whemdDT Hazard rate = |:DD—:| X{l——

are less than 0.1. +A (D+ K)T (12)
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Hazard Rate Hazard Rate
(per time period) (per time period)
L2E-02 1.2E-01
1LOE-02 1.OE-01
8.0E-03 80E-02
6.0E-03 6.0E-02
4.0E-03 40E-02
2.0E03 2.0E-02
00E+00 0.0E+00|
Hazard Rate, Hazard Rate
(per time period) (per time period)
1.2 12.0

© 101 (d)
1.01 Falabndade bt bl bl deded- L2 TR A L L b 10.0

9.0
8.0
7.0
6.0
50
4.0
3.0
2.0
1.0
0.0

DT

== =  High/Low (eqn. 7) === « More Accurate (eqn. 8) L1 Most Accurate (eqn. 12)

Monte Carlo Simulation

Fig. 5. Hazard rate comparison. (a) Safeguard failure rate =0.01 per test interval. (b) Safeguard failure rate =0.1 per test interval. (c)Slafegaed-1
per test interval. (d) Safeguard failure rate =10 per test interval.

Table 1
Comparison of failure rate equations
Failure rate per Demand rate per Straight-line High/low demand “More accurate” “Most accurate”
test period test period (Eq.(6)) (Eq.(7)) (Eq.(8)) (Eq.(12))
Low (<0.1) Low (<0.1) Excellent Excellent Excellent Excellent
Moderate (1) Fair Fair Good Excellent
High (10) Poor Good Good Excellent
Moderate (1) Low (<0.1) Good Good Good Excellent
Moderate (1) Fair Fair Good Excellent
High (10) Poor Good Good Excellent
High (10) All Poor Poor Fair Excellent
3. Conclusion “most accurate” Eq12) should be used when either the fail-

ure rate or the demand rate is not low and accuracy is required.
Table 1lpresents a comparison of these failure rate equa-
tions. This table shows that the simplified straight-line Eq.
(6) is suitable when the safeguard failure rate and the systemAppendix A
demand rate are low, which is commonly the case. How-
ever, this equation overestimates the failure rate for moderate  Definitions
demand rates and is unsuitable for use for high demand
rates. The high/low demand Ey) likewise overestimates Demand following failure ) The conditional likelihood

the risk at moderate demand rates, but may be reasonable that a demand occurs following a failure of a safe-
for high demand rates. The “more accurate” ) presents guard. A hazard only occurs if a demand follows a
an improvement over the straight-line approach for moderate safeguard failure

demand rates, but still overestimates the actual failure rate.

None of these equations are suitable given a high safeguard’, It is recognized that there is considerable variation in terminology and

failure r?-te- Only Eq(12) accurat_ely gives the hazard rate gefinitions in the field of risk analysis. This table is intended to help readers
for the wide range of evaluated failure and demand rates. Theunderstand how the terms are used in this paper.
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Demandratelf) The frequency (occasions pertime period), disk, level gauge, etc.) or administrative (proce-
on average, at which an initiating cause occurs. The dures, PPE, etc.)
rate can be measured, if frequent, or estimated if not Safeguard failure rate] The average frequency that a safe-
Expected number of hazard¥)( The expected number of guard is estimated to fail
hazards in a test interval Safeguard failure-upon-demand)( The conditional likeli-
Hazard An undesired event that can result in undesired hood that a safeguard would fail, upon demand
safety, environmental or financial consequences. Testing interval 1) Time period between independent tests
Hazards are deviations from normal operations and ofthe safeguards. Ayearis atypical testinterval, but
require the occurrence of an initiating cause with test intervals can range from essentially continuous
the failure of the safeguard to no tests at all

Hazard rate (HR) The frequency (occasions per time period)
at which a hazard is expected to occur. For exam-
ple, the frequency at which the pressure in a vessel References

exceeds the design pressure or the frequency at _
which a vessel is overfilled. The hazard rate can [1] IEC, IEC 61511, Functional Safety Instrumented Systems for the Pro-

cess Industry Sector, Parts 1-3, International Electrotechnical Com-
range fromarare calculated eventto afrequentevent | icsion Geneva, 2001.

where the rate can be measured [2] IEC, IEC 61508, Functional Safety of Electrical/Electronic/
Initiating cause An undesired cause of deviation from nor- Programmable Electronic Safety-related Systems, Parts 1-7, Interna-

mal operation parameters that can lead to a hazard. tional Electrotechnical Commission, Geneva, 1998.

Examples of initiating causes include a stuck con- 131 Center for Chemical Process Safety (CCPS), Layer of Protection
. . Analysis, Simplified Process Risk Assessment, New York American
trol valve, a pump failure, and failure to follow Institute of Chemical Engineers, 2001.
procedures [4] ISA, ISA-TR84.00.04 Part 1, Guideline on the Implementation of
Safeguard One or more componentsinstalled asaunitto pre- ANSI/ISA 84.00.01-2004 (IEC 61511 Mod), Annex | Continu-
vent the hazard from Occurring either by reducing ous Mode Versus Demand Mode, Instrument Society of America,
‘LAl A . Research Triangle Park, NC, 2004.
Fhe ,“ke“hOOd of the initiating cause or by mit . [5] TA. Kletz, HAZOP & HAZAN, Notes on the Identification and
igating the consequences of the hazard. For this

Y ; Assessment of Hazards, The Institution of Chemical Engineers,
definition, components can be equipment (rupture  Rugby, UK, 1983.
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